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probability p and number of trials N we wanted to describe the probability
of a given per-trial probability p with fixed x and N . We would get Prob(p)
proportional to px(1 − p)N−x — exactly the same formula, but with a dif-
ferent proportionality constant and a different interpretation. Instead of a
discrete probability distribution over a sample space of all possible numbers
of successes (0 to N), now we have a continuous probability distribution
over all possible probabilities (all values between 0 and 1). The second dis-
tribution, for Prob(p), is called the Beta distribution (p. 176) and it is the
conjugate prior for the binomial distribution.

Mathematically, conjugate priors have the same structure as the prob-
ability distribution of the data. They lead to a posterior distribution with
the same mathematical form as the prior, although with different parame-
ter values. Intuitively, you get a conjugate prior by turning the likelihood
around to ask about the probability of a parameter instead of the probability
of the data.

We’ll come back to conjugate priors and how to use them in Chapters 6
and 7.

4.4 ANALYZING PROBABILITY DISTRIBUTIONS

You need the same kinds of skills and intuitions about the characteristics of
probability distributions that we developed in Chapter 3 for mathematical
functions.

4.4.1 Definitions

Discrete

A probability distribution is the set of probabilities on a sample space or set
of outcomes. Since this book is about modeling quantitative data, we will
always be dealing with sample spaces that are numbers — the number or
amount observed in some measurement of an ecological system. The sim-
plest distributions to understand are discrete distributions whose outcomes
are a set of integers: most of the discrete distributions we’ll deal with de-
scribe counting or sampling processes and have ranges that include some or
all of the non-negative integers.

A discrete distribution is most easily described by its distribution func-
tion, which is just a formula for the probability that the outcome of an ex-
periment or observation (called a random variable) X is equal to a particular
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value x (f(x) = Prob(X = x)). A distribution can also be described by its
cumulative distribution function F (x) (note the uppercase F ), which is the
probability that the random variable X is less than or equal to a particular
value x (F (x) = Prob(X ≤ x). Cumulative distribution functions are most
useful for frequentist calculations of tail probabilities, e.g. the probability
of getting n or more heads in a series of coin-tossing experiments with a
given trial probability.

Continuous

A probability distribution over a continuous range (such as all real num-
bers, or the non-negative real numbers) is called a continuous distribu-
tion. The cumulative distribution function of a continuous distribution
(F (x) = Prob(X ≤ x) is easy to define and understand — it’s just the
probability that the continuous random variable X is smaller than a partic-
ular value x in any given observation or experiment — but the probability
density function (the analogue of the distribution function for a discrete
distribution) is more confusing, since the probability of any precise value is
zero. You may imagine that a measurement of (say) pH is exactly 7.9, but
in fact what you have observed is that the pH is between 7.82 and 7.98 —
if your meter has a precision of ± 1%. Thus continuous probability distri-
butions are expressed as probability densities rather than probabilities —
the probability that random variable X is between x and x + ∆x, divided
by ∆x (Prob(7.82 < X < 7.98)/0.16, in this case). Dividing by ∆x allows
the observed probability density to have a well-defined limit as precision
increases and ∆x shrinks to zero. Unlike probabilities, Probability densi-
ties can be larger than 1 (Figure 4.5). For example, if the pH probability
distribution is uniform on the interval [7,7.1] but zero everywhere else, its
probability density is 10. In practice, we will mostly be concerned with rel-
ative probabilities or likelihoods, and so the maximum density values and
whether they are greater than or less than 1 won’t matter much.

4.4.2 Means (expectations)

The first thing you usually want to know about a distribution is its average
value, also called its mean or expectation.

In general the expectation operation, denoted by E[·] (or a bar over
a variable, such as x̄) gives the “expected value” of a set of data, or a
probability distribution, which in the simplest case is the same as its (arith-
metic) mean value. For a set of N data values written down separately as
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Figure 4.5 Probability, probability density, and cumulative distributions. Top: discrete
(binomial: N = 5, p = 0.3) probability and cumulative probability distribu-
tions. Bottom: continuous (exponential: λ = 1.5) probability density and
cumulative probability distributions.

{x1, x2, x3, . . . xN}, the formula for the mean is familiar:

E[x] =
∑N

i=1 xi

N
. (4.4.1)

Suppose we have the data tabulated instead, so that for each possi-
ble value of x (for a discrete distribution) we have a count of the number
of observations (possibly zero, possibly more than 1), which we call c(x).
Summing over all of the possible values of x, we have

E[x] =
∑N

i=1 xi

N
=
∑

c(x)x
N

=
∑(

c(x)
N

)
x =

∑
Prob(x)x (4.4.2)

where Prob(x) is the discrete probability distribution representing this par-
ticular data set. More generally, you can think of Prob(x) as represent-
ing some particular theoretical probability distribution which only approx-
imately matches any actual data set.

We can compute the mean of a continuous distribution as well. First,
let’s think about grouping (or “binning”) the values in a discrete distri-
bution into categories of size ∆x. Then if p(x), the density of counts in
bin x, is c(x)/∆x, the formula for the mean becomes

∑
p(x) · x∆x. If we

have a continuous distribution with ∆x very small, this becomes
∫

p(x)x dx.
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(This is in fact the definition of an integral.) For example, an exponen-
tial distribution p(x) = λ exp(−λx) has an expectation or mean value of∫

λ exp(−λx)x dx = 1/λ. (You don’t need to know how to do this inte-
gral analytically, although the R supplement will show a little bit about
numerical integration in R.)

4.4.3 Variances (expectation of X2)

The mean is the expectation of the random variable X itself, but we can
also ask about the expectation of functions of X. The first example is the
expectation of X2. We just fill in the value x2 for x in all of the formulas
above: E[x2] =

∑
Prob(x)x2 for a discrete distribution, or

∫
p(x)x2 dx for

a continuous distribution. (We are not asking for
∑

Prob(x2)x2.) The
expectation of x2 is a component of the variance, which is the expected
value of (x− E[x])2 or (x− x̄)2, or the expected squared deviation around
the mean. (We can also show that

E[(x− x̄)2] = E[x2]− (x̄)2 (4.4.3)

by using the rules for expectations that (1) E[x + y] = E[x] + E[y] and (2)
if c is a constant, E[cx] = cE[x]. The right-hand formula formula is simpler
to compute than E[(x− x̄)2], but more subject to roundoff error.)

Variances are easy to work with because they are additive (we will
show later that Var(a + b) = Var(a) + Var(b) if a and b are uncorrelated),
but harder to compare with means since their units are the units of the mean
squared. Thus we often use instead the standard deviation of a distribution,
(
√

Var), which has the same units as X.

Two other summaries related to the variance are the variance-to-mean
ratio and the coefficient of variation (CV), which is the ratio of the standard
deviation to the mean. The variance-to-mean ratio has units equal to the
mean; it is primarily used to characterize discrete sampling distributions
and compare them to the Poisson distribution, which has a variance-to-
mean ratio of 1. The CV is more common, and is useful when you want
to describe variation that is proportional to the mean. For example, if you
have a pH meter that is accurate to ±10%, so that a true pH value of x will
give measured values that are normally distributed with 2σ = 0.1x∗, then
σ = 0.05x and the CV is 0.05.

∗Remember that the 95% confidence limits of the normal distribution are approximately
µ± 2σ.
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4.4.4 Higher moments

The expectation of (x − E[x])3 tells you the skewness of a distribution
or a data set, which indicates whether it is asymmetric around its mean.
The expectation E[(x − E[x])4] measures the kurtosis, the “pointiness” or
“flatness”, of a distribution. These are called the third and fourth central
moments of the distribution. In general, the nth moment is E[xn], and the
nth central moment is E[(x − x̄)n]; the mean is the first moment, and the
variance is the second central moment. We won’t be too concerned with
these summaries (of data or distributions), but they do come up sometimes.

4.4.5 Median and mode

The median and mode are two final properties of probability distributions
that are not related to moments. The median of a distribution is the point
which divides the area of the probability density in half, or the point at
which the cumulative distribution function is equal to 0.5. It is often useful
for describing data, since it is robust — outliers change its value less than
they change the mean — but for many distributions it’s more complicated
to compute than the mean. The mode is the “most likely value”, the max-
imum of the probability distribution or density function. For symmetric
distributions the mean, mode, and median are all equal; for right-skewed
distributions, in general mode < median < mean.

4.4.6 The method of moments

Suppose you know the theoretical values of the moments (e.g. mean and
variance) of a distribution and have calculated the sample values of the
moments (by calculating x̄ =

∑
x/N and s2 =

∑
(x−x̄)2/N : don’t worry for

the moment about whether the denominator in the sample variance should
be N or N − 1). Then there is a simple way to estimate the parameters
of a distribution, called the method of moments: just match the sample
values up with the theoretical values. For the normal distribution, where
the parameters of the distribution are just the mean and the variance, this
is trivially simple: µ = x̄, σ2 = s2. For a distribution like the negative
binomial, however (p. 165), it involves a little bit of algebra. The negative
binomial has parameters µ (equal to the mean, so that’s easy) and k; the
theoretical variance is σ2 = µ(1 + µ/k). Therefore, setting µ = x̄, s2 ≈
µ(1+µ/k), and solving for k, we calculate the method-of-moments estimate
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of k:
σ2 = µ(1 + µ/k)

s2 ≈ x̄(1 + x̄/k)

s2

x̄
− 1 ≈ x̄

k

k ≈ x̄

s2/x̄− 1

(4.4.4)

The method of moments is very simple but is biased in many cases;
it’s a good way to get a first estimate of the parameters of a distribution,
but for serious work you should follow it up with a maximum likelihood
estimator (Chapter 6).

4.5 BESTIARY OF DISTRIBUTIONS

The rest of the chapter presents brief introductions to a variety of useful
probability distributions, including the mechanisms behind them and some
of their basic properties. Like the bestiary in Chapter 3, you can skim this
bestiary on the first reading. The appendix of Gelman et al. (1996) contains
a useful table, more abbreviated than these descriptions but covering a wider
range of functions. The book by Evans et al. (2000) is also useful.

4.5.1 Discrete models

4.5.1.1 Binomial

The binomial is probably the easiest distribution to understand. It applies
when you have samples with a fixed number of subsamples or “trials” in
each one, and each trial can have one of two values (black/white, head-
s/tails, alive/dead, species A/species B), and the probability of “success”
(black, heads, alive, species A) is the same in every trial. If you flip a
coin 10 times (N = 10) and the probability of a head in each coin flip is
p = 0.7 then the probability of getting 7 heads (k = 7) will will have a
binomial distribution with parameters N = 10 and p = 0.7∗ Don’t confuse
the trials (subsamples), and the probability of success in each trial, with
the number of samples and the probabilities of the number of successful

∗Gelman and Nolan (2002) point out that it is not physically possible to construct a coin
that is biased when flipped — although a spinning coin can be biased. Diaconis et al. (2004)
even tested a coin made of balsa wood on one side and lead on the other to establish that it was
unbiased.
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trials in each sample. In the seed predation example, a trial is an indi-
vidual seed and the trial probability is the probability that an individual
seed is taken, while a sample is the observation of a particular station at a
particular time and the binomial probabilities are the probabilities that a
certain total number of seeds disappears from the station. You can derive
the part of the distribution that depends on x, px(1−p)N−x, by multiplying
the probabilities of x independent successes with probability p and N − x
independent failures with probability 1 − p. The rest of the distribution
function,

(
N
x

)
= N !/(x!(N − x)!), is a normalization constant that we can

justify either with a combinatorial argument about the number of different
ways of sampling x objects out of a set of N (Appendix), or simply by saying
that we need a factor in front of the formula to make sure the probabilities
add up to 1.

The variance of the binomial is Np(1−p). Like most discrete sampling
distributions (e.g. the binomial, Poisson, negative binomial), this variance
depends on the number of samples per trial N . When the number of samples
per trial increases the variance also increases, but the coefficient of variation
(
√

Np(1− p)/(Np) =
√

(1− p)/(Np)) decreases. The dependence on p(1−
p) means the binomial variance is small when p is close to 0 or 1 (and
therefore the values are scrunched up near 0 or N), and largest when p = 0.5.
The coefficient of variation, on the other hand, is largest for small p.

When N is large and p isn’t too close to 0 or 1 (i.e. when Np is large),
then the binomial distribution is approximately normal (Figure 4.17).

A binomial distribution with only one trial (N = 1) is called a Bernoulli
trial.

You should only use the binomial in fitting data when there is an
upper limit to the number of possible successes. When N is large and p is
small, so that the probability of getting N successes is small, the binomial
approaches the Poisson distribution, which is covered in the next section
(Figure 4.17).

Examples: number of surviving individuals/nests out of an initial sam-
ple; number of infested/infected animals, fruits, etc. in a sample; number
of a particular class (haplotype, subspecies, etc.) in a larger population.

Summary:
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Figure 4.6 Binomial distribution. Number of trials (N) equals 10 for all distributions.
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range discrete, 0 ≤ x ≤ N

distribution
(
N
x

)
px(1− p)N−x

R dbinom, pbinom, qbinom, rbinom
parameters p [real, 0–1], probability of success [prob]

N [positive integer], number of trials [size]
mean Np
variance Np(1− p)
CV

√
(1− p)/(Np)

Conjugate prior Beta

4.5.1.2 Poisson

The Poisson distribution gives the distribution of the number of individuals,
arrivals, events, counts, etc., in a given time/space/unit of counting effort
if each event is independent of all the others. The most common definition
of the Poisson has only one parameter, the average density or arrival rate,
λ, which equals the expected number of counts in a sampling unit. An
alternative parameterization gives a density per unit sampling effort and
then specifies the mean as the product of the density per sampling effort r
times the sampling effort t, λ = rt. This parameterization emphasizes that
even when the population density is constant, you can change the Poisson
distribution of counts by sampling more extensively — for longer times or
over larger quadrats.

The Poisson distribution has no upper limit, although values much
larger than the mean value are highly improbable. This characteristic pro-
vides a rule for choosing between the binomial and Poisson. If you expect
to observe a “ceiling” on the number of counts, you should use the binomial;
if you expect the number of counts to be effectively unlimited, even if it
is theoretically bounded (e.g. there can’t really be an infinite number of
plants in your sampling quadrat), use the Poisson.

The variance of the Poisson is equal to its mean. However, the coef-
ficient of variation (CV=standard deviation/mean) decreases as the mean
increases, so in that sense the Poisson distribution becomes more regular
as the expected number of counts increases. The Poisson distribution only
makes sense for count data. Since the CV is unitless, it should not depend
on the units we use to express the data; since the CV of the Poisson is
1/
√

mean, that means that if we used a Poisson distribution to describe
data on measured lengths, we could reduce the CV by a factor of 10 by
changing from meters to centimeters (which would be silly).

For λ < 1 the Poisson’s mode is at zero. When the expected number of
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Figure 4.7 Poisson distribution.

counts gets large (e.g. λ > 10) the Poisson becomes approximately normal
(Figure 4.17).

Examples: number of seeds/seedlings falling in a gap; number of off-
spring produced in a season (although this might be better fit by a binomial
if the number of breeding attempts is fixed); number of prey caught per unit
time.

Summary:
range discrete (0 ≤ x)
distribution e−λλn

n!

or e−rt(rt)n

n!
R dpois, ppois, qpois, rpois
parameters λ (real, positive), expected number per sample [lambda]

or r (real, positive), expected number per unit effort, area, time, etc. (arrival rate)
mean λ (or rt)
variance λ (or rt)
CV 1/

√
λ (or 1/

√
rt)

Conjugate prior Gamma
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4.5.1.3 Negative binomial

Most probability books derive the negative binomial distribution from a se-
ries of independent binary (heads/tails, black/white, male/female, yes/no)
trials that all have the same probability of success, like the binomial dis-
tribution. Rather than count the number of successes obtained in a fixed
number of trials, which would result in a binomial distribution, the negative
binomial counts the number of failures before a predetermined number of
successes occurs.

This failure-process parameterization is only occasionally useful in eco-
logical modeling. Ecologists use the negative binomial because it is discrete,
like the Poisson, but its variance can be larger than its mean (i.e. it can be
overdispersed). Thus, it’s a good phenomenological description of a patchy
or clustered distribution with no intrinsic upper limit that has more variance
than the Poisson.

The“ecological”parameterization of the negative binomial replaces the
parameters p (probability of success per trial: prob in R) and n (number of
successes before you stop counting failures: size in R) with µ = n(1−p)/p,
the mean number of failures expected (or of counts in a sample: mu in R),
and k, which is typically called an overdispersion parameter. Confusingly,
k is also called size in R, because it is mathematically equivalent to n in
the failure-process parameterization.

The overdispersion parameter measures the amount of clustering, or
aggregation, or heterogeneity, in the data: a smaller k means more hetero-
geneity. The variance of the negative binomial distribution is µ+µ2/k, and
so as k becomes large the variance approaches the mean and the distribu-
tion approaches the Poisson distribution. For k > 10, the negative binomial
is hard to tell from a Poisson distribution, but k is often less than 1 in
ecological applications∗.

Specifically, you can get a negative binomial distribution as the result
of a Poisson sampling process where the rate λ itself varies. If the distribu-
tion of λ is a gamma distribution (p. 172) with shape parameter k and mean
µ, and x is Poisson-distributed with mean λ, then the distribution of x be a
negative binomial distribution with mean µ and overdispersion parameter k
(May, 1978; Hilborn and Mangel, 1997). In this case, the negative binomial
reflects unmeasured (“random”) variability in the population.

∗Beware of the word “overdispersion”, which is sometimes used with an opposite meaning in
spatial statistics, where it can mean “more regular than expected from a random distribution of
points”. If you took quadrat samples from such an “overdispersed” population, the distribution
of counts would have variance less than the mean and be “underdispersed” in the probability
distribution sense (Brown and Bolker, 2004) (!)
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Figure 4.8 Negative binomial distribution. Mean µ = 2 in all cases.

Negative binomial distributions can also result from a homogeneous
birth-death process, births and deaths (and immigrations) occurring at ran-
dom in continuous time. Samples from a population that starts from 0 at
time t = 0, with immigration rate i, birth rate b, and death rate d will be
negative binomially distributed with parameters µ = i/(b − d)(e(b−d)t − 1)
and k = i/b (Bailey, 1964, p. 99).

Several different ecological processes can often generate the same prob-
ability distribution. We can usually reason forward from knowledge of prob-
able mechanisms operating in the field to plausible distributions for mod-
eling data, but this many-to-one relationship suggests that it is unsafe to
reason backwards from probability distributions to particular mechanisms
that generate them.

Examples: essentially the same as the Poisson distribution, but allow-
ing for heterogeneity. Numbers of individuals per patch; distributions of
numbers of parasites within individual hosts; number of seedlings in a gap,
or per unit area, or per seed trap.
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Summary:
range discrete, x ≥ 0
distribution (n+x−1)!

(n−1!)x! pn(1− p)x

or Γ(k+x)
Γ(k)x! (k/(k + µ))k(µ/(k + µ))x

R dnbinom, pnbinom, qnbinom, rnbinom
parameters p (0 < p < 1) probability per trial [prob]

or µ (real, positive) expected number of counts [mu]
n (positive integer) number of successes awaited [size]
or k (real, positive), overdispersion parameter [size]

(= shape parameter of underlying heterogeneity)
mean µ = n(1− p)/p
variance µ + µ2/k = n(1− p)/p2

CV
√

(1+µ/k)
µ = 1/

√
n(1− p)

Conjugate prior No simple conjugate prior (Bradlow et al., 2002)

R’s default coin-flipping (n =size, p =prob) parameterization. In
order to use the “ecological” (µ =mu, k =size) parameterization, you must
name the mu parameter explicitly (e.g. dnbinom(5,size=0.6,mu=1)).

4.5.1.4 Geometric

The geometric distribution is the number of trials (with a constant prob-
ability of failure) until you get a single failure: it’s a special case of the
negative binomial, with k or n = 1.

Examples: number of successful/survived breeding seasons for a sea-
sonally reproducing organism. Lifespans measured in discrete units.

Summary:
range discrete, x ≥ 0
distribution p(1− p)x

R dgeom, pgeom, qgeom, rgeom
parameters p (0 < p < 1) probability of “success” (death) [prob]
mean 1/p− 1
variance (1− p)/p2

CV 1/
√

1/(1− p)
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Figure 4.9 Geometric distribution.
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4.5.1.5 Beta-binomial

Just as one can compound the Poisson distribution with a Gamma to allow
for heterogeneity in rates, producing a negative binomial, one can compound
the binomial distribution with a Beta distribution to allow for heterogeneity
in per-trial probability, producing a Beta-binomial distribution (Crowder,
1978; Reeve and Murdoch, 1985; Hatfield et al., 1996). The most common
parameterization of the beta-binomial distribution uses the binomial pa-
rameter N (trials per sample), plus two additional parameters a and b that
describe the beta distribution of the per-trial probability. When a = b = 1
the per-trial probability is equally likely to be any value between 0 and 1
(the mean is 0.5), and the beta-binomial gives a uniform (discrete) distri-
bution between 0 and N . As a + b increases, the variance of the underlying
heterogeneity decreases and the beta-binomial converges to the binomial
distribution. Morris (1997) suggests a different parameterization that uses
an overdispersion parameter θ, like the k parameter of the negative binomial
distribution. In this case the parameters are N , the per-trial probability p
(= a/(a + b)), and θ (= a + b). When θ is large (small overdispersion), the
beta-binomial becomes binomial. When θ is near zero (large overdispersion),
the beta-binomial becomes U-shaped (Figure 4.10).

Summary:
range discrete, 0 ≤ x ≤ N
R dbetabinom, rbetabinom [emdbook package]

(pbetabinom and qbetabinom are missing)
density Γ(θ)

Γ(pθ)Γ((1−p)θ) ·
N !

x!(N−x)! ·
Γ(x+pθ)Γ(N−x+(1−p)θ)

Γ(N+θ)

parameters p (real, positive), probability: average per-trial probability [prob]
θ (real, positive), overdispersion parameter [theta]
or a and b (shape parameters of Beta distribution for per-trial probability)
[shape1 and shape2]
a = θp, b = θ(1− p)

mean Np

variance Np(1− p)
(
1 + N−1

θ+1

)
CV

√
(1−p)
Np

(
1 + N−1

θ+1

)
Examples: as for the binomial.
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Figure 4.10 Beta-binomial distribution. Number of trials (N) equals 10, average per-trial
probability (p) equals 0.5 for all distributions.
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Figure 4.11 Uniform distribution.

4.5.2 Continuous distributions

4.5.2.1 Uniform distribution

The uniform distribution with limits a and b, denoted U(a, b), has a constant
probability density of 1/(b−a) for a ≤ x ≤ b and zero probability elsewhere.
The standard uniform, U(0, 1), is very commonly used as a building block
for other distributions, but is surprisingly rarely used in ecology otherwise.

Summary:
range a ≤ x ≤ b
distribution 1/(b− a)
R dunif, punif, qunif, runif
parameters minimum (a) and maximum (b) limits (real) [min, max]
mean (a + b)/2
variance (b− a)2/12
CV (b− a)/((a + b)

√
3)
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4.5.2.2 Normal distribution

Normally distributed variables are everywhere, and most classical statistical
methods use this distribution. The explanation for the normal distribution’s
ubiquity is the Central Limit Theorem, which says that if you add a large
number of independent samples from the same distribution the distribution
of the sum will be approximately normal. “Large”, for practical purposes,
can mean as few as 5. The central limit theorem does not mean that “all
samples with large numbers are normal”. One obvious counterexample is
two different populations with different means that are lumped together,
leading to a distribution with two peaks (p. 183). Also, adding isn’t the
only way to combine samples: if you multiply independent samples from
the same distribution, you get a log-normal distribution instead of a normal
distribution (p. 178).

Many distributions (binomial, Poisson, negative binomial, gamma)
become approximately normal in some limit (Figure 4.17). You can usually
think about this as some form of “adding lots of things together”.

The normal distribution specifies the mean and variance separately,
with two parameters, which means that one often assumes constant variance
(as the mean changes), in contrast to the Poisson and binomial distribution
where the variance is a fixed function of the mean.

Examples: practically everything.

Summary:
range all real values
distribution 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
R dnorm, pnorm, qnorm, rnorm
parameters µ (real), mean [mean]

σ (real, positive), standard deviation [sd]
mean µ
variance σ2

CV σ/µ
Conjugate prior Normal (µ); Gamma (1/σ2)

4.5.2.3 Gamma

The Gamma distribution is the distribution of waiting times until a certain
number of events take place. For example, Gamma(shape = 3, scale = 2)
is the distribution of the length of time (in days) you’d expect to have to
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Figure 4.12 Normal distribution



book August 29, 2007

174 CHAPTER 4

wait for 3 deaths in a population, given that the average survival time is
2 days (mortality rate is 1/2 per day). The mean waiting time is 6 days=(3
deaths/(1/2 death per day)). (While the gamma function (gamma in R: see
Appendix) is usually written with a capital Greek gamma, Γ, the Gamma
distribution (dgamma in R) is written out as Gamma.) Gamma distributions
with integer shape parameters are also called Erlang distributions. The
Gamma distribution is still defined for non-integer (positive) shape param-
eters, but the simple description given above breaks down: how can you
define the waiting time until 3.2 events take place?

For shape parameters ≤ 1, the Gamma has its mode at zero; for shape
parameter = 1, the Gamma is equivalent to the exponential (see below). For
shape parameter greater than 1, the Gamma has a peak (mode) at a value
greater than zero; as the shape parameter increases, the Gamma distribution
becomes more symmetrical and approaches the normal distribution. This
behavior makes sense if you think of the Gamma as the distribution of the
sum of independent, identically distributed waiting times, in which case it
is governed by the Central Limit Theorem.

The scale parameter (sometimes defined in terms of a rate parameter
instead, 1/scale) just adjusts the mean of the Gamma by adjusting the
waiting time per event; however, multiplying the waiting time by a constant
to adjust its mean also changes the variance, so both the variance and the
mean depend on the scale parameter.

The Gamma distribution is less familiar than the normal, and new
users of the Gamma often find it annoying that in the standard parameter-
ization you can’t adjust the mean independently of the variance. You could
define a new set of parameters m (mean) and v (variance), with scale = v/m
and shape = m2/v — but then you would find (unlike the normal distri-
bution) the shape changing as you changed the variance. Nevertheless, the
Gamma is extremely useful; it solves the problem that many researchers
face when they have a continuous variable with “too much variance”, whose
coefficient of variation is greater than about 0.5. Modeling such data with a
normal distribution leads to unrealistic negative values, which then have to
be dealt with in some ad hoc way like truncating them or otherwise trying
to ignore them. The Gamma is often a more realistic alternative.

The Gamma is the continuous counterpart of the negative binomial,
which is the discrete distribution of a number of trials (rather than length
of time) until a certain number of events occur. Both the negative binomial
and Gamma distributions are often generalized, however, in ways that don’t
necessarily make sense according to their simple mechanistic descriptions
(e.g. a Gamma distribution with a shape parameter of 2.3 corresponds to
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Figure 4.13 Gamma distribution

the distribution of waiting times until 2.3 events occur . . . ).

The Gamma and negative binomial are both commonly used phe-
nomenologically, as skewed or overdispersed versions of the Poisson or nor-
mal distributions, rather than for their mechanistic descriptions. The Gamma
is less widely used than the negative binomial because the negative bino-
mial replaces the Poisson, which is restricted to a particular variance, while
the Gamma replaces the normal, which can have any variance. Thus you
might use the negative binomial for any discrete distribution with variance
> mean, while you wouldn’t need a Gamma distribution unless the distri-
bution you were trying to match was skewed to the right.

Summary:
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range positive real values
R dgamma, pgamma, qgamma, rgamma
distribution 1

saΓ(a)x
a−1e−x/s

parameters s (real, positive), scale: length per event [scale]
or r (real, positive), rate = 1/s; rate at which events occur [rate]
a (real, positive), shape: number of events [shape]

mean as or a/r
variance as2 or a/r2

CV 1/
√

a

Examples: almost any environmental variable with a large variance
where negative values don’t make sense: nitrogen concentrations, light in-
tensity, etc..

4.5.2.4 Exponential

The exponential distribution (Figure 4.14) describes the distribution of wait-
ing times for a single event to happen, given that there is a constant proba-
bility per unit time that it will happen. It is the continuous counterpart of
the geometric distribution and a special case (for shape parameter=1) of the
Gamma distribution. It can be useful both mechanistically, as a distribution
of inter-event times or lifetimes, or phenomenologically, for any continuous
distribution that has highest probability for zero or small values.

Examples: times between events (bird sightings, rainfall, etc.); lifes-
pans/survival times; random samples of anything that decreases exponen-
tially (e.g. light levels in a forest canopy).

Summary:
range positive real values
R dexp, pexp, qexp, rexp
density λe−λx

parameters λ (real, positive), rate: death/disappearance rate [rate]
mean 1/λ
variance 1/λ2

CV 1

4.5.2.5 Beta

The beta distribution, a continuous distribution closely related to the bi-
nomial distribution, completes our basic family of continuous distributions
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(Figure 4.17). The beta distribution is the only standard continuous dis-
tribution (besides the uniform distribution) with a finite range, from 0 to
1. The beta distribution is the inferred distribution of the probability of
success in a binomial trial with a− 1 observed successes and b− 1 observed
failures. When a = b the distribution is symmetric around x = 0.5, when
a < b the peak shifts toward zero, and when a > b it shifts toward 1. With
a = b = 1, the distribution is U(0, 1). As a + b (equivalent to the total
number of trials+2) gets larger, the distribution becomes more peaked. For
a or b less than 1, the mechanistic description stops making sense (how can
you have fewer than zero trials?), but the distribution is still well-defined,
and when a and b are both between 0 and 1 it becomes U-shaped — it has
peaks at p = 0 and p = 1.

The beta distribution is obviously good for modeling probabilities or
proportions. It can also be useful for modeling continuous distributions with
peaks at both ends, although in some cases a finite mixture model (p. 183)
may be more appropriate. The beta distribution is also useful whenever you
have to define a continuous distribution on a finite range, as it is the only
such standard continuous distribution. It’s easy to rescale the distribution
so that it applies over some other finite range instead of from 0 to 1: for
example, Tiwari et al. (2005) used the beta distribution to describe the
distribution of turtles on a beach, so the range would extend from 0 to the
length of the beach.

Summary:
range real, 0 to 1
R dbeta, pbeta, qbeta, rbeta
density Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1

parameters a (real, positive), shape 1: number of successes +1 [shape1]
b (real, positive), shape 2: number of failures +1 [shape2]

mean a/(a + b)
mode (a− 1)/(a + b− 2)
variance ab/((a + b)2)(a + b + 1)
CV

√
(b/a)/(a + b + 1)

4.5.2.6 Lognormal

The lognormal falls outside the neat classification scheme we’ve been build-
ing so far; it is not the continuous analogue or limit of some discrete sampling
distribution (Figure 4.17)∗. Its mechanistic justification is like the normal

∗The lognormal extends our table in another direction — exponential transformation of a
known distribution. Other distributions have this property, most notably the extreme value distri-
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distribution (the Central Limit Theorem), but for the product of many in-
dependent, identical variates rather than their sum. Just as taking loga-
rithms converts products into sums, taking the logarithm of a lognormally
distributed variable—which might result from the product of independent
variables—converts it it into a normally distributed variable resulting from
the sum of the logarithms of those independent variables. The best example
of this mechanism is the distribution of the sizes of individuals or popula-
tions that grow exponentially, with a per capita growth rate that varies
randomly over time. At each time step (daily, yearly, etc.), the current size
is multiplied by the randomly chosen growth increment, so the final size
(when measured) is the product of the initial size and all of the random
growth increments.

One potentially puzzling aspect of the lognormal distribution is that
its mean is not what you might naively expect if you exponentiate a nor-
mal distribution with mean µ (i.e. eµ). Because of Jensen’s inequality, and
because the exponential function is an accelerating function, the mean of
the lognormal, eµ+σ2/2, is greater than eµ by an amount that depends on
the variance of the original normal distribution. When the variance is small
relative to the mean, the mean is approximately equal to eµ, and the log-
normal itself looks approximately normal (e.g. solid lines in Figure 4.16,
with σ(log) = 0.2). As with the Gamma distribution, the distribution also
changes shape as the variance increases, becoming more skewed.

The log-normal is also used phenomenologically in some of the same
situations where a Gamma distribution also fits: continuous, positive dis-
tributions with long tails or variance much greater than the mean (McGill
et al., 2006). Like the distinction between a Michaelis-Menten and a sat-
urating exponential, you may not be able to tell the difference between a
lognormal and a Gamma without large amounts of data. Use the one that
is more convenient, or that corresponds to a more plausible mechanism for
your data.

Examples: sizes or masses of individuals, especially rapidly growing
individuals; abundance vs. frequency curves for plant communities.

Summary:

bution, which is the log-exponential: if Y is exponentially distributed, then log Y is extreme-value
distributed. As its name suggests, the extreme value distribution occurs mechanistically as the
distribution of extreme values (e.g. maxima) of samples of other distributions (Katz et al., 2005).
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Figure 4.17 Relationships among probability distributions.

range positive real values
R dlnorm, plnorm, qlnorm, rlnorm
density 1√

2πσx
e−(log x−µ)2/(2σ2)

parameters µ (real): mean of the logarithm [meanlog]
σ (real): standard deviation of the logarithm [sdlog]

mean exp(µ + σ2/2)
variance exp(2µ + σ2)(exp(σ2)− 1)
CV

√
exp(σ2)− 1 (≈ σ when σ < 1/2)

4.6 EXTENDING SIMPLE DISTRIBUTIONS; COMPOUNDING AND

GENERALIZING

What do you do when none of these simple distributions fits your data?
You could always explore other distributions. For example, the Weibull
distribution (similar to the Gamma distribution in shape: ?dweibull in R)
generalizes the exponential to allow for survival probabilities that increase
or decrease with age (p. 331). The Cauchy distribution (?dcauchy in R),
described as fat-tailed because the probability of extreme events (in the
tails of the distribution) is very large — larger than for the exponential or
normal distributions — can be useful for modeling distributions with many
outliers. You can often find useful distributions for your data in modeling
papers from your subfield of ecology.

However, in addition to simply learning more distributions it can also
useful to learn some strategies for generalizing more familiar distributions.


